Ultrafilters on semifilters

William R. Brian

A semifilter is, for our purposes, an upward-closed subset of the partial order $\mathcal{P}(\omega)/\text{fin}$. In other words, a semifilter is like a (free) filter except that it is not required to be closed under finite intersections. Being subsets of $\mathcal{P}(\omega)/\text{fin}$, semifilters are partial orders. The (ultra)filters on a given semifilter \mathfrak{S} correspond to closed subsets of ω^* (via Stone duality), and these subsets can have interesting dynamical/algebraic properties for certain choices of \mathfrak{S} .

The cardinal numbers \mathfrak{p} and \mathfrak{t} describe combinatorial aspects of the partial order $\mathcal{P}(\omega)/\text{fin}$. Analogous constants can be defined for any partial order \mathbb{P} : its pseudo-intersection number $\mathfrak{p}_{\mathbb{P}}$ and its tower number $\mathfrak{t}_{\mathbb{P}}$. We will show that if \mathfrak{S} is a semifilter that is G_{δ} in 2^{ω} , then $\mathfrak{p}_{\mathfrak{S}} = \mathfrak{t}_{\mathfrak{S}} = \mathfrak{p}^{-1}$. If $\mathfrak{p} = \mathfrak{c}$ then this allows us to build ultrafilters on G_{δ} semifilters that are also *P*-filters, and we will discuss some consequences of this for the dynamical/algebraic structure of ω^* .

¹Since $\mathcal{P}(\omega)/\text{fin}$ is G_{δ} in 2^{ω} , this result implies the Malliaris-Shelah equality $\mathfrak{p} = \mathfrak{t}$. We are not claiming to have found a new proof of this equality. Instead, will show $\mathfrak{p} \leq \mathfrak{p}_{\mathfrak{S}} \leq \mathfrak{t}_{\mathfrak{S}} \leq \mathfrak{t}$ and then use Malliaris and Shelah's equality to complete our proof.